Tampilkan postingan dengan label GEOGRAFI. Tampilkan semua postingan
Tampilkan postingan dengan label GEOGRAFI. Tampilkan semua postingan

Rabu, 14 Desember 2011

Geosentris Dan Heliosentris Di Eropa


Jika dilihat secara sepintas, benda-benda di langit tampak bergerak dari timur ke barat. Selama satu hari satu malam, bintang-bintang, planet, Bulan, dan Matahari terbit dan tenggelam. Namun sebenarnya bukan hanya gerakan terbit dan tenggelam saja yang terjadi pada benda-benda langit tersebut. Ada yang bergerak dari ekuator ke utara, kembali ke ekuator, ke selatan, dan kembali lagi ke ekuator dalam waktu satu bulan atau satu tahun, seperti Bulan atau Matahari. Ada objek yang arah geraknya berubah-ubah dalam hitungan bulan. Awalnya bergerak dari barat ke timur lalu berubah menjadi dari timur ke barat, lalu kembali lagi seperti semula, sebagaimana yang terjadi dengan semua planet. Dan ada juga planet yang tidak pernah jauh dari Matahari, yang hanya terlihat di barat setelah Matahari terbenam atau di timur sebelum Matahari terbit. Dari gerakan benda-benda langit yang kompleks tersebut kemudian timbul pertanyaan besar, apa yang sebenarnya terjadi di langit?
Pemikiran tentang gerak benda langit sudah dilakukan ratusan tahun sebelum masehi. Prosesnya dimulai sejak Anaximander (611-546 SM) membuat model geosentris pertama dengan mengungkapkan bahwa Bumi datar, tidak bergerak, dan dikelilingi oleh Matahari, Bulan, dan bintang-bintang yang terletak pada kulit-kulit bola. Kemudian Phytagoras (569-475 SM), yang mengajarkan bahwa bola adalah bentuk geometri yang paling sempurna, membuat perubahan pada model sebelumnya dengan mengatakan bahwa bentuk Bumi adalah bulat. Tambahan mendetil juga diberikan oleh Eudoxus (408 SM) tentang gerak benda langit yang melingkar.
Model geosentris ini terus disempurnakan oleh beberapa orang, misalnya Aristoteles (384-322 SM). Ia memiliki kelebihan dibanding orang-orang sebelumnya karena melakukan pengamatan untuk memperjelas model geosentris ini. Dari salah satu hasil pengamatannya ia memberikan bukti yang menunjukkan bahwa Bumi itu bulat. Kesimpulan itu didapatnya setelah mengamati bayangan Bumi yang mengenai permukaan Bulan pada peristiwa gerhana Bulan berbentuk lingkaran. Ia juga berpendapat bahwa ukuran Bumi yang sangat besar membuatnya tidak mungkin untuk bergerak.
Tokoh Sejarah
Pertentangan kemudian muncul ketika Aristarchus (310-230 SM) menolak model geosentris. Dan ia pun menjadi orang yang untuk pertama kalinya mengusulkan ide bahwa sebenarnya Mataharilah yang menjadi pusat alam semesta (heliosentris). Menurutnya, Bumi bergerak mengelilingi Matahari sembari melakukan rotasi. Salah satu hal yang mendasari pernyataan Aristarchus ini adalah perhitungannya terhadap ukuran Matahari. Matahari dikatakan lebih besar daripada Bumi. Maka berdasarkan pernyataan Aristoteles, Matahari lebih tidak mungkin bergerak daripada Bumi.
Gagasan Aristarchus ini kemudian tidak mendapat tanggapan dan dukungan dari masyarakat sekitarnya saat itu. Terutama karena tidak ada orang yang dapat membuktikan bahwa Bumi sedang bergerak melakukan rotasi ataupun mengelilingi Matahari. Salah satu bukti yang dicari saat itu adalah paralaks akibat Bumi mengelilingi Matahari. Namun karena tidak ada yang dapat mengamatinya maka disimpulkan bahwa Bumi memang tidak mengelilingi Matahari. Dan mereka beranggapan bahwa jika Bumi berotasi, maka semua benda di udara akan tertinggal dan menimbulkan angin besar. Tetapi karena hal itu tidak terjadi, maka disimpulkan bahwa Bumi memang tidak berotasi.
Berbagai peningkatan akurasi model geosentris kemudian dilakukan oleh Hipparchus (190-120 SM), yang meletakkan Bumi tidak tepat di pusat sistem (melainkan di posisi eksentris) dan mendefinisikan lingkaran episiklis dan deferen untuk planet-planet. Episiklis adalah lintasan planet yang berbentuk lingkaran, yang titik pusatnya berada di deferen, yaitu sebuah lingkaran yang titik pusatnya berada dekat dengan Bumi. Dalam perkembangannya, sebuah episiklis bisa saja berada dalam episiklis lainnya. Jadi, dalam sistem ini semua planet bergerak mengelilingi titik pusat episiklisnya, sementara titik pusat episiklisnya tersebut bergerak sepanjang deferen.
Perubahan dalam model geosentris baru ini diperlukan untuk menjelaskan gerak benda langit yang memang cukup rumit. Episiklis diperlukan untuk menjelaskan gerak retrograde planet sedangkan posisi Bumi yang tidak di pusat berfungsi untuk menjelaskan laju Matahari, Bulan dan planet yang tidak konstan. Perubahan juga diperlukan untuk peningkatan akurasi karena model ini dibuat dengan tujuan agar dapat digunakan dalam pengamatan selanjutnya, dengan kata lain, posisi benda langit pada waktu apapun harus dapat diramalkan dengan akurat. Tujuan ini menjadi berbeda dengan tujuan awal pembuatan model yang hanya berlandaskan kepentingan filosofis saja.
Gerak Retrograde Saturnus
Gerak retrograde Saturnus (Sumber: APOD).
Hipparchus membuat model geosentrisnya ini dengan menggunakan data dari pengamatannya sendiri yang cukup akurat. Ini adalah salah satu kelebihannya. Model ini juga disebut-sebut sebagai yang terbaik karena dapat menjelaskan gerak retrograde planet, kecerlangan maksimum planet superior yang terjadi saat retrograde, laju orbit planet, Matahari dan Bulan yang tidak konstan, serta karena model ini dapat diperbaiki akurasinya dengan penambahan episiklis.
Sampai saat ini, model geosentris dibuat dengan menempatkan Bumi di pusat sistem, kemudian berturut-turut ke arah luar adalah Bulan, Merkurius, Venus, Matahari, Mars, Jupiter, Saturnus, dan bintang-bintang. Urutan tersebut dibuat berdasarkan laju yang diamati dari Bumi. Bulan berada di posisi terdekat dari Bumi karena memiliki laju orbit yang paling tinggi. Semua bintang dikatakan terletak pada jarak yang sama dari Bumi karena tidak terlihat adanya pergerakan individu. Jumlah planet juga hanya lima karena pada saat itu Neptunus dan Uranus belum ditemukan.
Model Geosentris Ptolemy
3 Planet Terdekat Dari Matahari
Untuk menjelaskan posisi Merkurius dan Venus yang tidak pernah jauh dari Matahari sehingga hanya bisa diamati pada saat Matahari belum terbit atau saat Matahari sudah terbenam, model geosentris ini membuat garis yang menghubungkan Bumi, titik pusat episiklis Merkurius dan Venus, serta Matahari. Garis ini bermakna bahwa gerak Matahari akan selalu bersamaan dengan titik pusat episiklis Merkurius serta Venus.
Apa yang dilakukan Ptolemy (85-165 M) kemudian adalah semakin menyempurnakan model yang telah dibuat oleh Hipparchus. Ptolemy memperkenalkan equant, sebuah solusi geometris untuk menjelaskan laju tak konstan objek yang mengelilingi Bumi dengan lebih baik. Dalam modelnya ini, pergerakan episiklis di deferen konstan terhadap titik equant, bukan terhadap titik pusat sebagaimana yang digunakan dalam model geosentris Hipparchus. Hal ini mengakibatkan laju planet akan terlihat tidak konstan dari pengamat di Bumi.
Model Alam Semesta (Tata Surya) Ptolemy
Model alam semesta (tata surya) Ptolemy.
Model Ptolemy ini dikatakan cukup baik dalam memberikan penjelasan terhadap hasil pengamatan dan sekaligus memprediksi posisi benda langit di masa depan. Model ini pun digunakan sebagai panduan masyarakat dalam memahami alam semesta dan bertahan tanpa tandingan hingga hampir 15 abad kemudian.

Mengamati Hujan Meteor Perseids Sembari Sahur


Langit malam yang bertabur bintang ternyata masih menyimpan banyak keindahan. Berbagai fenomena astronomi terkadang muncul di sela-sela dingin dan gelapnya malam. Setelah Gerhana Bulan Total yang terjadi pada tanggal 16 Juni 2011 lalu, kita akan dapat menyaksikan satu lagi fenomena astronomi yang sangat menarik di bulan Agustus ini. Yaitu hujan meteor Perseids, yang puncaknya akan terjadi pada tanggal 13 Agustus 2011 dinihari nanti. Namun kita masih dapat mengamatinya hingga 3 hari sebelum atau sesudah tanggal tersebut.
Hujan meteor adalah munculnya banyak meteor di langit dalam rentang waktu tertentu sehingga terlihat seperti hujan cahaya. Berkas cahaya tersebut diakibatkan oleh masuknya benda angkasa ke atmosfer Bumi. Akibat gesekan dan tekanan di atmosfer, batuan tersebut memanas, berpijar, dan terbakar di atmosfer. Karena kecepatannya, masing-masing meteor akan terlihat seperti benang cahaya yang muncul hanya sekedipan mata saja. Dan karena itu, meteor hanya bisa dinikmati dengan mata telanjang alias tanpa peralatan khusus seperti binokuler atau teleskop.
Sebuah meteor terekam dalam foto di depan teleskop VLT di observatorium Paranal, Chili. Sumber: eso.org
Sebuah meteor terekam dalam foto di depan teleskop VLT di observatorium Paranal, Chili. Sumber: eso.org
Saat hujan meteor Perseids terjadi, kita dapat lihat hingga puluhan meteor setiap jamnya. Mungkin Anda bertanya-tanya dari manakah asal batu angkasa sebanyak itu. Suatu hujan meteor terjadi jika dalam orbitnya mengelilingi Matahari, Bumi memasuki area yang penuh dengan batu dan debu angkasa. Serpihan batu dan debu itu sebenarnya berasal dari komet yang pernah melintas sebelumnya. Begitu juga dengan hujan meteor Perseids ini. Meteor-meteornya berasal dari serpihan komet Swift-Tuttle, yang ditemukan pertama kali pada tahun 1862 dan terakhir kali terlihat dari Bumi pada tahun 1992. Karena posisi serpihan batu dan debu ini tetap di angkasa, maka peristiwa hujan meteor juga akan terjadi rutin setiap tahun di sekitar tanggal yang sama.
Dalam sebuah peristiwa hujan meteor, meteor dapat muncul di area langit mana saja. Tetapi apabila kita tarik garis lurus dari setiap meteor tersebut, semuanya akan tampak seolah-olah berasal dari satu titik. Titik asal ini disebut dengan titik radian. Titik radian ini pasti berada di salah satu rasi dari 88 rasi di langit. Nama genitif dari rasi tersebutlah yang kemudian dijadikan nama hujan meteornya. Begitu juga dengan nama Perseids untuk peristiwa hujan meteor yang terjadi kali ini. Asalnya adalah dari nama rasi Perseus. Rasi ini terletak di belahan langit utara dan baru terbit pada pukul 00 waktu lokal.
Rasi Perseus di arah timur laut. Semua meteor akan tampak seolah-olah berasal dari rasi ini. Sumber: iya2009.com
Rasi Perseus di arah timur laut. Semua meteor akan tampak seolah-olah berasal dari rasi ini. Sumber: iya2009.com
Lantas bagaimana cara mengamati hujan meteor ini dan kapan waktu terbaik untuk mengamatinya? Caranya adalah dengan mencari tempat yang memiliki area langit seluas mungkin, yang tidak terhalang bangunan atau pepohonan. Dan akan lebih nyaman lagi jika kita bisa melihat langit sembari berbaring dengan beralaskan tikar atau karpet atau koran bekas. Waktu terbaik untuk mengamati hujan meteor adalah setelah tengah malam hingga langit terang pertanda matahari segera terbit.
Syarat lainnya adalah tempat pengamatan tidak boleh terlalu terang. Karena beberapa meteor mungkin akan tampak redup. Sayangnya, tanggal 13 nanti Bulan akan berada pada fase menjelang purnama, sehingga cahayanya akan cukup mengganggu pengamatan kita. Tetapi, tentu tidak ada salahnya mencoba. Maka dari itu, sembari menunggu waktu sahur, mari kita keluar rumah dan menghitung jumlah meteor yang melintas di langit.

Galaksi Bimasakti


Terdapat banyak bintang, nebula, dan gugus bintang yang bisa diamati di langit setiap malamnya. Semua objek tersebut berada di dalam galaksi kita. Di beberapa bagian bintang nampak padat sehingga ketika langit cerah, bersih dari awan, dan kondisi sekitar yang gelap, kita bisa melihat pita berwarna putih yang memanjang dan melintasi beberapa rasi seperti Sagittarius (arah pusat Galaksi), Scorpius, Ophiucus, Aquila, Cassiopeia, Auriga, Crux, dan Centaurus. Sementara di bagian yang lain tampak celah-celah gelap yang menunjukkan adanya materi antar bintang yang tebal. Itulah (bidang) galaksi yang kita tinggali. Bentuknya yang seperti itu kemudian menginspirasi orang untuk menamakannya dengan sebutan Milky Way. Kata galaksi dan milky way itu sendiri diadaptasi dari bahasa Yunani “galaxias” dan Latin “via lactea” dengan kata dasar lactea yang berarti susu. Sedangkan menurut orang Indonesia, galaksi kita diberi nama Bimasakti. Menurut salah satu sumber dari Observatorium Bosscha, sejarah penamaan ini berasal ketika Presiden RI pertama, Soekarno, ditunjukkan citra galaksi oleh salah seorang astronom Indonesia. Ternyata, Soekarno melihat salah satu bagian gelap di foto tersebut menyerupai tokoh Bima Sakti. Namun tidak diketahui bagian gelap mana yang dimaksud.
Galaksi Bimasakti dilihat dari Bumi (Sumber: eso.org)
Galaksi Bimasakti dilihat dari Bumi (Sumber: eso.org)
Galaksi adalah tempat berkumpulnya bintang-bintang di alam semesta. Hampir tidak ditemukan adanya bintang yang berkelana sendiri di ruang antar galaksi. Dan Matahari termasuk di antara 200 milyar bintang di Galaksi Bimasakti (disingkat dengan Galaksi). Dengan asumsi bahwa rata-rata massa bintang di Galaksi adalah sebesar massa Matahari, maka massa Galaksi dapat mencapai 2 x 10^11 massa Matahari (massa Matahari adalah 2 x 10^30 kg).
Bentuk galaksi Bimasakti seperti dua buah piring cekung yang ditangkupkan, bagian tengahnya tebal dan semakin pipih ke arah tepi, dan terdapat lengan-lengan spiral di dalamnya. Oleh karena itu Galaksi kita digolongkan ke dalam galaksi spiral. Berdasarkan klasifikasi galaksi Hubble, galaksi Bimasakti termasuk dalam kelas SBbc. Artinya, Galaksi kita adalah galaksi spiral yang memiliki “bar” atau palang di bagian pusatnya, dengan kecerlangan bagian pusat yang relatif sama dengan bagian piringan, dan memiliki struktur lengan spiral yang agak renggang di bagian piringannya.
Gambaran Galaksi Bimasakti Terbaru
Gambaran Galaksi Bimasakti terbaru (Sumber: NASA/JPL-Caltech)
Galaksi spiral tersusun atas 3 bagian utama, yaitu bagian bulge, halo, dan piringan. Ketiganya memiliki bentuk, ukuran, dan objek penyusun yang berbeda-beda. Bahkan, bagian bulge dan piringan menjadi penentu dalam klasifikasi galaksi yang dibuat oleh Hubble (diagram garpu tala).
Bagian bulge adalah daerah di galaksi yang kepadatan bintangnya paling tinggi. Bintang-bintang tua lebih banyak ditemukan daripada bintang muda, karena sangat sedikit materi pembentuk bintang yang terdapat di sini. Bulge ini berbentuk elipsoid seperti bola rugby. Bintang-bintang di dalamnya bergerak dengan kecepatan tinggi dan orbit yang acak, tidak sebidang dengan bidang galaksi. Dari perhitungan kecepatan orbit bintang-bintang di dalamnya, diperoleh kesimpulan bahwa terdapat sebuah benda bermassa sangat besar yang berada di pusat Galaksi yang jauh lebih besar daripada perkiraan sebelumnya. Benda tersebut diyakini adalah sebuah lubang hitam supermasif, yang diperkirakan terdapat di bagian pusat semua galaksi spiral. Termasuk juga di galaksi Andromeda, galaksi spiral terdekat dari Galaksi kita.
Komponen kedua adalah halo. Berbentuk bola, ukuran komponen ini sangat besar hingga jauh membentang melingkupi bulge dan piringan, bahkan mungkin lebih jauh daripada batas terluar piringan galaksi yang bisa kita amati. Objek yang menjadi penyusun halo dibagi menjadi dua kelompok, yaitu stellar halo dan dark halo. Yang dimaksud dengan stellar halo adalah bintang-bintang yang berada di bagian halo. Namun hanya sedikit ditemukan bintang individu di bagian ini. Yang lebih dominan adalah kelompok bintang-bintang tua yang jumlah bintang anggotanya mencapai jutaan buah, yang disebut dengan gugus bola (globular cluster).
Di bagian piringan terdapat bintang-bintang muda serta gas dan debu antar bintang yang terletak di lengan spiral. Banyak ditemukannya bintang muda dan gas antar bintang sangat berkaitan erat, karena gas adalah materi utama pembentuk bintang. Di beberapa lokasi bahkan ditemukan bintang-bintang muda yang masih diselimuti gas, yang menandakan bahwa bintang-bintang tersebut baru terbentuk. Sedangkan banyaknya debu di piringan membuat pengamat di Bumi kesulitan untuk melakukan pengamatan visual di sekitar bidang Galaksi, terutama ke arah pusat Galaksi (lihat gambar di atas). Karenanya, pengamatan di sekitar bidang Galaksi akan memberikan hasil yang lebih baik jika dilakukan di daerah panjang gelombang radio dan infra merah yang tidak terpengaruh oleh debu antar bintang (lihat gambar di bawah).
Bimasakti dalam infra merah dekat
Galaksi Bimasakti dalam panjang gelombang infra merah dekat (Sumber: NASA-LAMBDA)
Seberapa besar Galaksi kita? Di bagian pusat Galaksi, bulge hanya memiliki diameter 6 kpc dan tebal 4 kpc (kpc = kiloparsek, 1 parsek = 3,26 tahun cahaya = 206265 SA = 3,086 x 10^13 km). Jarak dari pusat hingga ke bagian tepi Galaksi (jari-jari) adalah 15 kpc dengan ketebalan rata-rata sebesar 300 pc. Sedangkan Matahari berada pada jarak 8 kpc dari pusat. Di posisi itu, Matahari sedang bergerak mengelilingi pusat Galaksi dengan bentuk orbit yang hampir melingkar. Laju orbitnya adalah sekitar 250 km/detik sehingga matahari memerlukan waktu 220 juta tahun untuk berkeliling satu kali. Jika umur matahari adalah 4,6 milyar tahun, berarti tata surya kita sudah mengorbit pusat Galaksi sebanyak 20 kali.
Galaksi kita sebenarnya berada pada sebuah kelompok galaksi yang disebut dengan Grup Lokal, yang ukurannya mencapai 1 MPc dan beranggotakan lebih dari 30 galaksi. Galaksi spiral yang ada di kelompok ini hanya tiga, yaitu Bimasakti, Andromeda, dan Triangulum. Sisanya adalah galaksi yang lebih kecil dengan bentuk elips atau tak beraturan. Grup Lokal ini termasuk kelompok galaksi yang dinamis. Maksudnya adalah bahwa galaksi-galaksi di kelompok ini mengalami interaksi gravitasi, termasuk Galaksi kita dengan galaksi Andromeda. Interaksi tersebut diperkirakan akan mengakibatkan terjadinya tabrakan antara Galaksi kita dengan Andromeda dan kemudian membentuk galaksi elips. Namun jangan terlalu khawatir karena peristiwa tersebut tidak akan terjadi hingga 2 milyar tahun lagi.